Reunión de las Redes de Funcionarios de Ozono de México, Centro América, Sur América y el Caribe de habla hispana Quito, Ecuador, agosto de 2014

### Overview of Alternatives and Climate Impact Scenarios Report of Decision XXV/5 Montreal Protocol

*Roberto A. Peixoto Instituto Mauá de Tecnologia UNEP RTOC*  2010 Report of the Refrigeration, Air Conditioning and Heat Pumps Technical Options Committee (RTOC)

2010 Assessment

MONTREAL PROTOCOL ON SUBSTANCES THAT DEPLETE THE OZONE LAYER



Celebrating 25 years of success in 2012





#### Decision XXV/5 Task Force Report: Additional Information to Alternatives on ODS

• Update information on alternatives to ozone-depleting substances in various sectors and subsectors and differentiating between Article 5 and non-Article 5 parties, considering regional differences, and assessing whether they are;

#### Decision XXV/5

- Commercially available
- Technically proven
- Environmentally sound
- Easy to use
- Safe use flammability & toxicity
- Economically viable & cost effective
- High ambient temperatures
- High urban densities
- Estimate current and future demand for ODS alternatives, taking into account increased demand, particularly in the refrigeration and air conditioning sectors

#### UNITED NATIONS ENVIRONMENT PROGRAMME OZONE SECRETARIAT

HOME WHAT'S NEW TREATIES & DECISIONS MEE

MEETINGS INSTITUTIONS ASSESSMENT PANELS DATA REPORTING PUBLICATIONS

- Assessment Panels
  Technology and Economic Assessment Panel (TEAP)
- Scientific Assessment Panel (SAP)
- Environmental Effects Assessment Panel (EEAP)
  FAQs on Ozone Layer

#### Technology and Economic Assessment Panel (TEAP)

In 1990 the Technology and Economic Assessment Panel was established as the technology and economics advisory body to the Montreal Protocol Parties. The Technology and Economic Assessment Panel (TEAP) provides, at the request of Parties, technical information related to the alternative technologies that have been investigated and employed to make it possible to virtually eliminate use of Ozone Depleting Substances (such as CFCs and Halons), that harm the ozone layer. The TEAP is also tasked by the Parties every year to assess and evaluate various technical issues including evaluating nominations for essential use exemptions for CFCs and halons, and nominations for critical use exemptions for methyl bromide. TEAP's annual reports are a basis for the Parties' informed decision-making.

The TEAP manages its subsidiary bodies including the standing Technical Options Committees and temporary Task Forces which are established and dissolved according to the needs for specialized assessments as required by the Parties. The Panel operates with six Technical Options Committees (TOCs)namely Chemicals Technical Options Committee (CTOC), Flexible and Rigid Foams Technical Options Committee (HTOC), Medical Technical Options Committee (MTOC), Methyl Bromide Technical Options Committee (MBTOC) and Refrigeration, Air-Conditioning and Heat Pumps Technical Options Committee (RTOC) The Technical Options Committee (MTOC) and Refrigeration and technical Options Committee (RTOC).

#### TEAP HIGHLIGHTS

#### Experts Required

Invitation to Help Protect the Stratospheric Ozone Layer as an Expert on the Technology and Economic Assessment Panel (TEAP) and its Technical Options Committees (TOCs).... *More* >>

Terms of Reference of the Technology and Economic Assessment Panel

#### HIGHLIGHTS OF TEAP MAY 2014 REPORTS

• Progress Report (vol.1)

Essential Use Nominations Report (vol. 2)

Critical Use Nominations Report (vol. 3)

- Decision XXV/5 Task Force Report: Additional Information to Alternatives on ODS (vol.4)
- Response to Decision XXV/6 (vol. 5)
- Decision XXV/8: Assessment of the Funding Requirement for the Replenishment of the Multilateral Fund for the Period 2015-2017 (vol.

#### **Draft Report available:**

http://ozone.unep.org/new\_site/en/assessment\_panels\_ bodies.php?committee\_id=6

- Alternatives listed (with comments to technology, commercialisation, energy efficiency, costs, barriers and restrictions)
  - 6 low GWP pure fluids (R-717, R-744, HCs, HFC(HFCO)s) (GWP<300)
  - 14 low GWP HFC(HFO) based blends plus HFC-32
  - 3 HFC based blends (GWP>1000)
- Sub-sectors covered are:

| Domestic Refrigeration    | Air Conditioning        |
|---------------------------|-------------------------|
| Commercial Refrigeration  | Heat Pumps              |
| Transport Refrigeration   | Chillers                |
| Large-scale Refrigeration | Mobile Air Conditioning |

For refrigerants there is differentiation between commercial use (C), limited use (L) and feasibility (F) by sector

- Low GWP options: natural refrigerants and unsaturated HFCs (or HFOs), with a very low GWP (GWP even smaller than <1);
- The application sectors targeted were, in a first instance, the MAC sector (HFC-1234yf)
- For many applications the use of these refrigerants would not be satisfactory as a replacement for the high-GWP HFCs.
- Chemical industry has been developing a number of blends consisting of high GWP HFCs and low GWP HFCs, HFC-32 and hydrocarbons (carbon dioxide)
- blends were characterised by certain acronyms, recently however, ASHRAE 34 approved a number of R-designations for a number of them.

- Many of the blends developed have a GWP of about 300, sometimes slightly higher
- These refrigerants and refrigerant blends are supposed to be the synthetic low GWP chemical replacements in the next 5-10 year period at least.
- Developments are still ongoing, even where it concerns the testing and development of new pure low GWP synthetic refrigerants, and possible blends with these.
- The main question is which type of refrigerants will take over from the usual HFCs, or rather, which share of the usual high GWP HFC and HFC blends will be replaced by which type of low GWP refrigerants.

| Designation | Refrigerants                           | Composition             | GWP  | Replacement for                                 |
|-------------|----------------------------------------|-------------------------|------|-------------------------------------------------|
| R-444A      | HFC-32 /-152a/-1234ze                  | 12/5/83                 | 92   | HFC-134a replacement MAC                        |
| R-444B      | HFC-32/-152a/-1234ze                   | ze 41.5/10/48.5         |      | HCFC-22 replacement                             |
| R-445A      | R-744/-134a/-1234ze                    | 6/9/85                  | 135  | HFC-134a replacement MAC                        |
| R-446A      | HFC-32/-1234ze/HC-600                  | 68/29/3                 | 461  | R-410A replacement                              |
| R-447A      | HFC-32/-125/-1234ze                    | 68/3.5/28.5             | 583  | R-410A replacement                              |
| R-450A      | HFC-134a/-1234ze                       | 42/58                   | 605  | HFC-134a replacement                            |
| R-513A      | HFC-134a/-1234yf                       | 44/56                   | 630  | HFC-134a replacement                            |
| R-448A      | HFC-32/-125/-1234yf/ -<br>134a/-1234ze | 26/26/20/ 21<br>/7      | 1390 | R-404A replacement                              |
| R-449A      | HFC-32/-125/ -<br>134a/-1234yf         | 24.3/24.7/<br>25.3/25.7 | 1400 | R-404A replacement                              |
| R-452A      | HFC-32/-125/-1234yf                    | 11/59/30                | 2140 | R-404A replacement (transport<br>refrigeration) |

## **EU Regulations**

| Year | Specific measure                    |
|------|-------------------------------------|
| 2015 | Domestic appliances GWP < 150       |
| 2020 | Mobile AC units GWP < 150           |
| 2020 | Stationary refrigeration GWP < 2500 |
| 2022 | Multipack systems GWP < 150         |
| 2025 | Single split AC < 3 kg, GWP < 750   |

The aim of the regulation is a reduction of HFC emissions in climate terms of 79% by 2030, compared to 2015, to be achieved by the application of low GWP chemicals, quota systems and servicing practices.

### Commercial refrigeration

- •HFC-134a and R-404A are still the dominant refrigerants for *stand-alone* (SA) equipment
- R-407F and R-407A are intermediate refrigerant blends to replace R-404A or HCFC-22.
- •HC-600a and HC-290 are used for small SA equipment
- •R-744 is mainly used in vending machines and bottle coolers

•HFC-134a, R-404A and, R-410A are HFCs of choice for *condensing units* (CU). R-407A or R-407F is chosen to replace R-404A in Europe

- Low GWP blends have been developed to replace R-404A
- R-744 cascade systems (CS) have taken a significant uptake in *centralised systems* in Europe
- The preferred option for CS is HFC-134a with R-744. Low GWP HFC can be used as replacement of HFC-34a
- For cold climates, R744 is used in CS at both temperature levels.

### Transport refrigeration

- For Trucks, trailers and intermodal containers R-404A, R-407C, HFC-134a, and R-410A are the refrigerant of choice
- Initial field tests with small fleets of containers using R-744 have started

### Large size (industrial) refrigeration)

• Over 90% of the large industrial refrigeration installations use R-717

#### Water heating heat pumps

•R-410A, HFC-134a, R-407C, HC-290, HC-600a, R-717, R-744 have been used *Air conditioners* 

•R-407C and R-410A have been used in a large proportion in *small self-contained* units

• Portable type units are widely available using HC-290 and window units are now in production



### Air conditioners (cont.)

•HFC-32 in SSC ACs and production is likely to begin soon

• The blends R-446A, R-447A, R-444B and "DR5" are feasible to use in SSC Acs

•Most Japanese companies have stopped manufacturing R-410A products and have commercialised R32 minisplit

•HC-290: some companies developing and producing units on a larger scale



### Air conditioners (cont.)

- R-444B is feasible to use in split ACs, for example, to replace HCFC-22 or R-407C, trials are ongoing
- The use of R-744 in all of these sub-categories is limited to northern climates where temperatures

### Chillers

- R-407C, R-410A and HFC-134a are widely used in chillers
- R-717 is used widely, R-744 is now used, HC-290 and HC-1270 chillers are produced
- HFC-1234yf and HFC-1234ze(E) are suitable for chillers and have been trialled
- The blends R-444B, R-446A, R-447A and DR-5 could be used as replacements for HCFC-22, R-407C or R-410A

#### Mobile Air Conditioning

Dependent on the country, the preferred option is to keep going with HFC-134a or to shift to HFC-1234yf.

#### **Domestic Refrigeration**

- HC-600a is increasing including many A 5 countries
- The USA market now includes several products with HC-600a
- HFC-1234yf could become a third candidate

#### Alternatives to HCFCs and high GWP HFCs

| Sector                                      | CFCs             | HCFCs                                     | HFCs<br>Pure &                         | HCs               | CO2<br>Ammonia              | Unsaturated<br>HFCs                           | Blends with Unsaturated<br>HFCs                                                                   |
|---------------------------------------------|------------------|-------------------------------------------|----------------------------------------|-------------------|-----------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------|
|                                             |                  |                                           | Blends                                 |                   |                             | Pure                                          |                                                                                                   |
| Domestic<br>Refrigeration                   | CFC-12           |                                           | HFC-134a                               | HC-600a           |                             | HFC-1234yf                                    | R-450A, XP-10,                                                                                    |
| Commercial<br>Refrigeration<br>(SA, CU, CS) | CFC-12<br>R-502  | HCFC-22                                   | HFC-134a<br>R-404A<br>R-407A           | HC-600a<br>HC-290 | <mark>CO2</mark><br>Ammonia | HFC-1234yf<br>HFC <mark>-</mark><br>1234ze(E) | R-450A, XP-10, "L-40", R-444B, "L-41"<br>"DR-5", R-450A, "XP-10", R-448A, R-<br>449A              |
| Transport<br>Refrigeration                  |                  | HCFC-22                                   | R-407F<br>HFC-134a<br>R-407C<br>R-410A | HC-290<br>HC-1270 | <b>CO2</b>                  | HFC-1234yf                                    | R-450A, XP-10, "L-40", R-444B, "L-41"<br>"DR-5", R-450A, "XP-10", R-448A, R-<br>449A              |
| Industrial<br>refrigeration                 |                  | HCFC-22                                   |                                        | HC-1270<br>HC-290 | Ammonia<br>CO2              | HFC-1234yf                                    | R-450A, XP-10, "L-40", R-444B, "L-41"<br>"DR-5", R-450A, "XP-10", R-448A, R-<br>449A              |
| Water heating<br>heat pumps                 |                  | HCFC-22                                   | HFC-134a<br>R-410A<br>R-407C           | HC-290<br>HC-600a | CO2<br>Ammonia              | HFC-1234yf<br>HFC-<br>1234ze(E)               | R-450A, XP-10, "L-40", R-444B, "L-41"<br>"DR-5", R-450A, "XP-10", R-448A, R-<br>449A              |
| Air<br>Conditioners                         |                  | HCFC-22                                   | HFC-134a<br>HFC-32<br>R-410A<br>R-407C | HC-290            | CO2                         | HFC-1234yf                                    | R-450A, XP-10, "L-40", R-444B, "L-41"<br>"DR-5", R-450A, "XP-10", R-448A, R-<br><mark>449A</mark> |
| Chillers                                    | CFC-12<br>CFC-11 | HCFC-22<br>HCFC-123<br>HCFO-<br>1233zd(E) | HFC-134a<br>R-404A<br>R-410A<br>R-407C | HC-290<br>HC-1270 | Ammonia<br>CO2              | HFC-1234yf<br>HFC-<br>1234ze(E)               | R-450A, XP-10, "L-40", R-444B, "L-41"<br>"DR-5", R-450A, "XP-10", R-448A, R-<br><mark>449A</mark> |
| Mobile Air<br>Conditioner                   | CFC-12           |                                           | HFC-134a<br>R-410A<br>R-407C           |                   | CO2                         | HFC-1234yf                                    | <mark>R-450A, "XP-10</mark> "                                                                     |

<mark>XXX</mark> past use

XXX current use on a commercial-scale

XXX potentially feasible or limited use such as for demonstration, trials, niche applications, etc

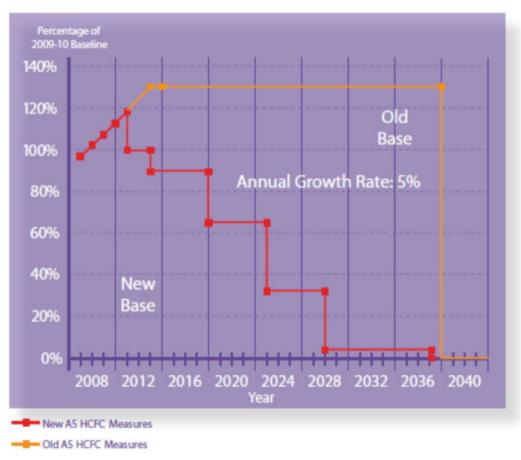
### RAC – BAU scenario

Based upon a bottom-up model for demand, banks and emissions

Timeframe chosen 2015-2030, because 2025 would not show enough changes in various scenarios

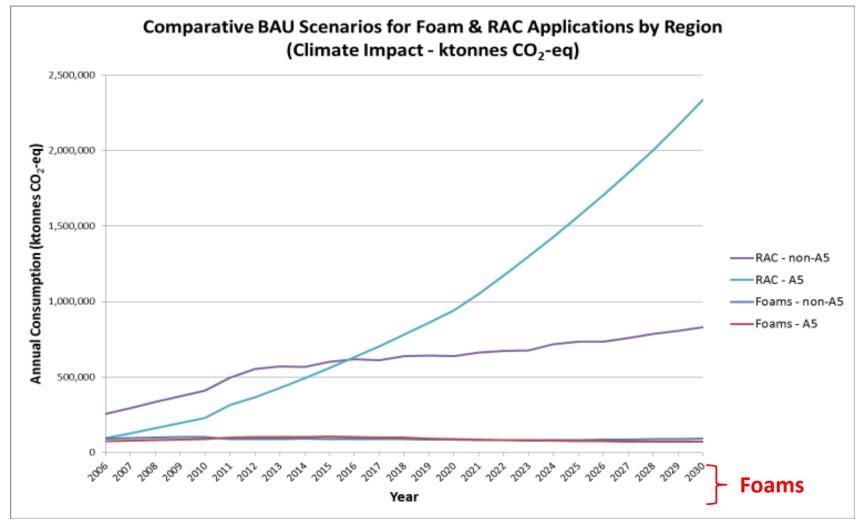
Incorporates current EU F-gas regulation

No measures or bans on HFCs in other countries

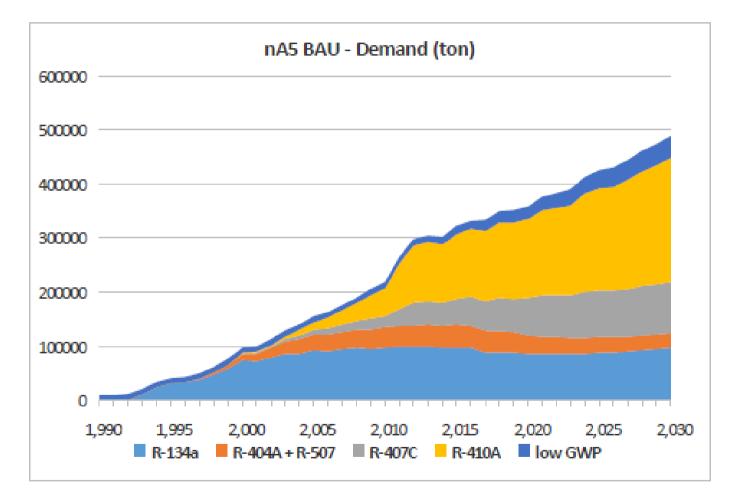

Economic growth by using recent growth parameters and extrapolating them into the future

Looking at all RAC subsectors

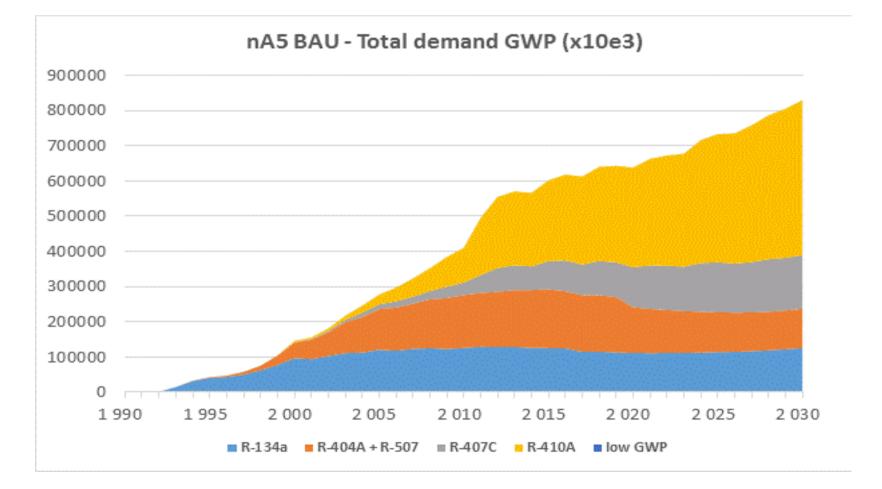
Results of the demand for the period 2015-30 in tonnes of certain refrigerants or blends as well as in tonnes CO2-eq (including low GWP in the BAU approach)


### RAC – BAU scenario

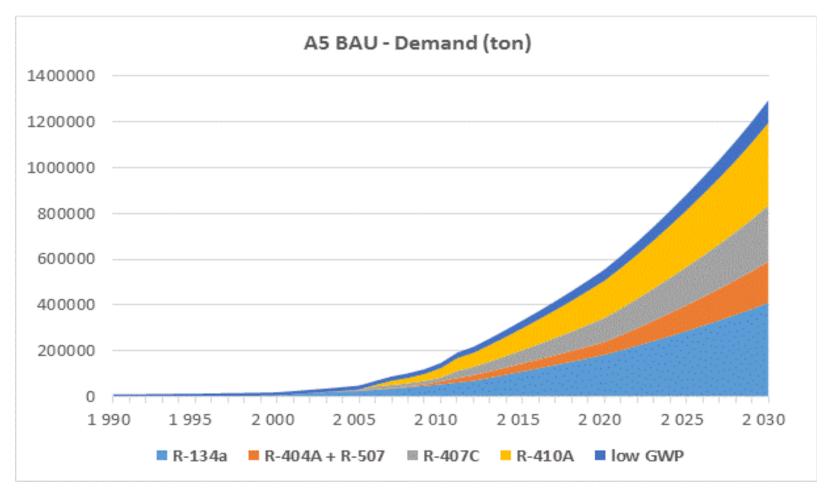
Montreal Protocol HCFC phase-out schedule for Article 5 countries



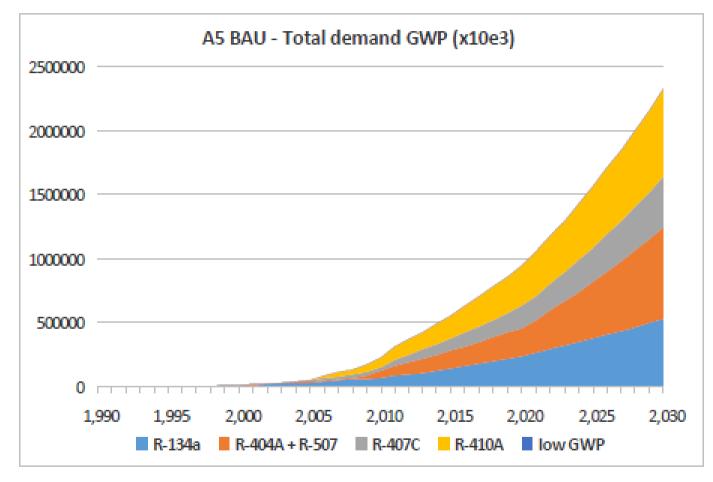

A major challenge created by the terms of Decision XIX/6 is that the freeze in 2013 is based on the average of the 2009 and 2010 consumption. This means that growth in the period from 2010 to 2012 needs to be offset in 2013


### Refrigeration/AC demand




### Refrigeration/AC - BAU Non-A5




### Refrigeration/AC - BAU Non-A5



### Refrigeration/AC - BAU A5



### Refrigeration/AC - BAU A5



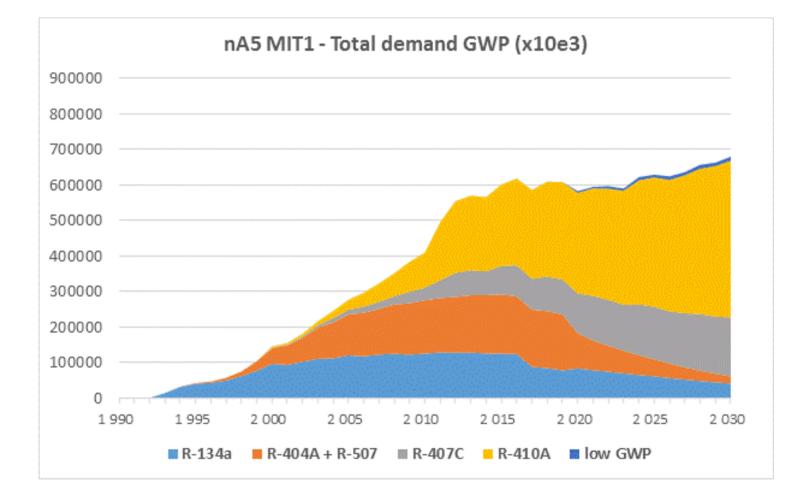
### RAC – MIT- scenarios

- Purpose is to show the importance of MAC and commercial refrigeration first
- Introduction years (of the "ban") in Non-Article 5 and Article 5 are different for these sectors
- Secondly, in the MIT-2 scenario, the importance of the use of HFCs and the conversion to low GWP in stationary AC is the big issue

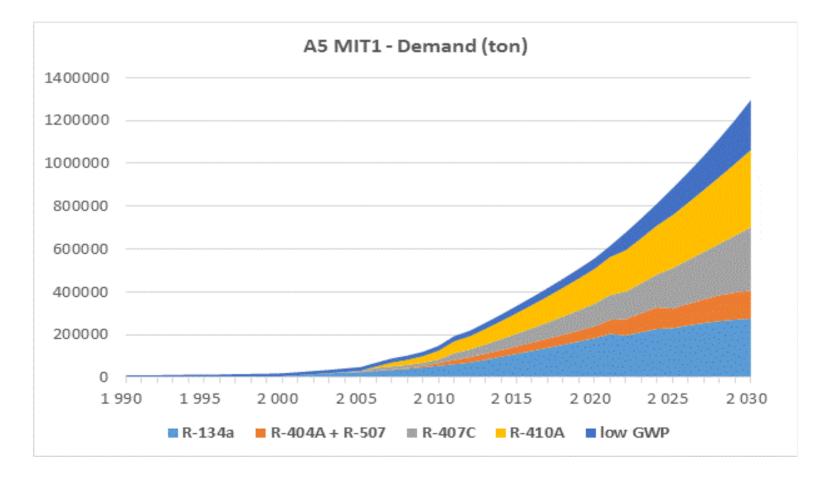
## RAC – MIT-1 scenario

• Subsector and "ban" approach

#### Non Article 5 countries


- EU regulation
- Ban on MAC new 134a equipment by 2017 in all countries
- Domestic refrigeration out of HFC-134a
- No R-404A in new equipment by 2020 in all countries (R-407C)

#### <u>Article 5 countries</u>


• Same measures as above for non-A5, five years later

No measures in stationary air conditioning, nowhere

### RAC – MIT-1 for Non-A5

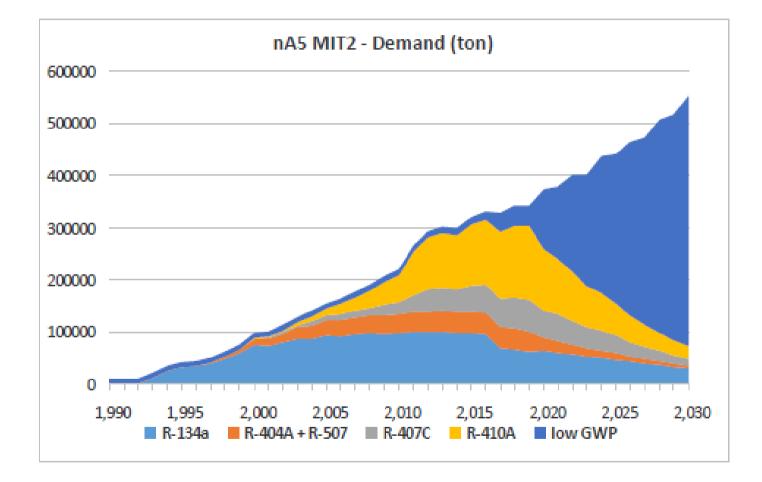


### RAC – MIT-1 for A5

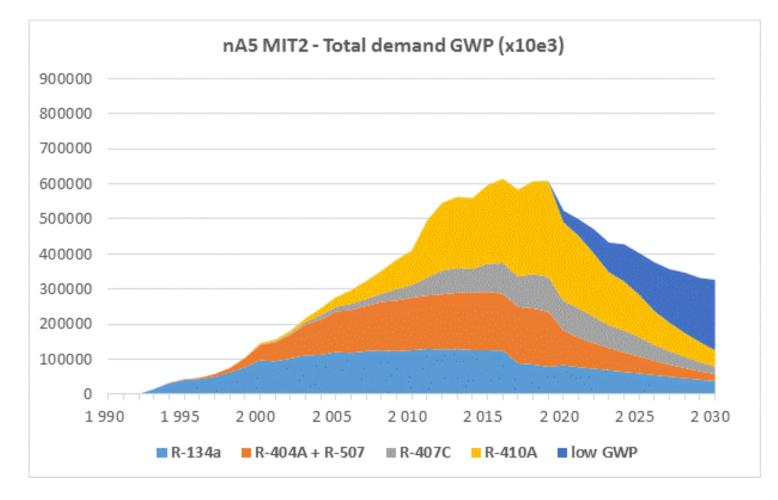


## RAC – MIT-2 scenario

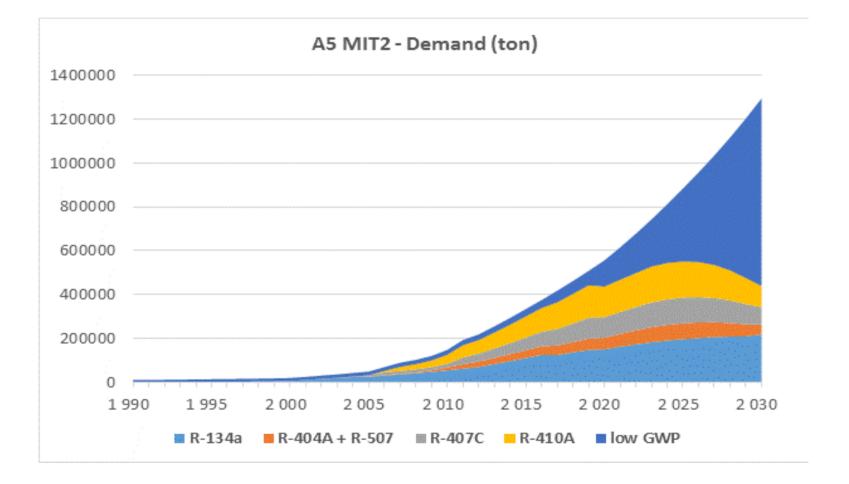
• Subsector and "ban" approach


#### Non Article 5 countries

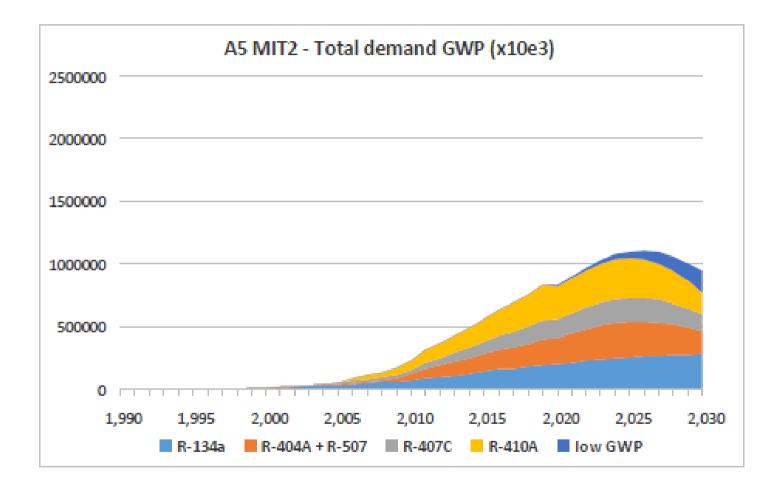
- EU regulation
- Ban on MAC new 134a equipment by 2017 in all countries
- Domestic refrigeration out of HFC-134a
- No R-404A in new equipment by 2020 in all countries (only low GWP)
- Stationary AC new manufacturing to low GWP (GWP<300) as of 2020</li>


#### <u>Article 5 countries</u>

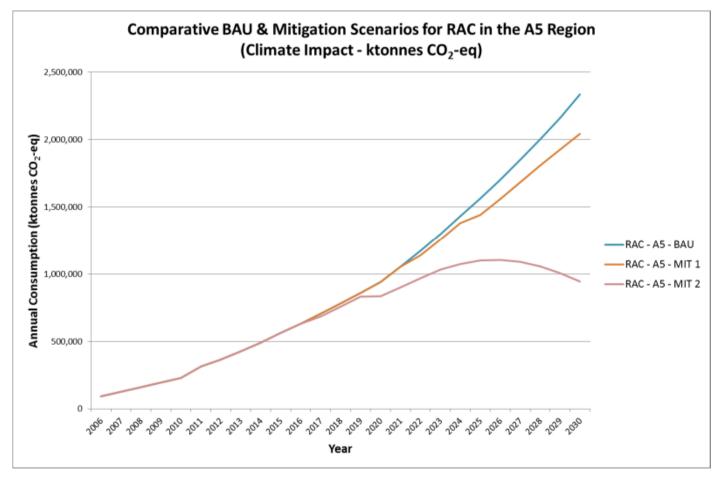
• Same measures as above for non-A<sub>5</sub>, with the same years


### RAC – MIT-2 for Non-A5

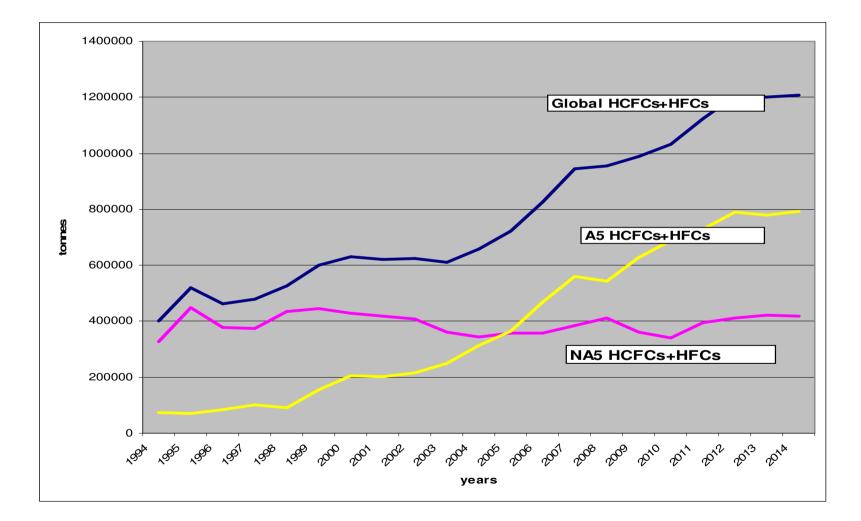



### RAC – MIT-2 for Non-A5




### RAC – MIT-2 for A5




### RAC – MIT-2 for A5



# Impact of Mit Scenarios for RAC in the A-5 Region



#### HCFC and HFC demand in tonnes



### Summary of Findings

- Information about the available alternatives continues to evolve and the capabilities and limits of technologies are being further characterised
- Business-as-Usual scenarios have been defined through to 2030 for both A5 and non-A5 parties
- *Refrigeration and Air Conditioning is the dominant sector in terms of BAU consumption*
- It has been possible to identify plausible measures that support two further mitigation scenarios beyond the current BAU assumptions
- *MIT-1 could cumulatively deliver 3,000 Mtonnes CO*<sub>2</sub>*-eq saving by 2030 with MIT-2 delivering 11,000 Mtonnes CO*<sub>2</sub>*-eq in the same time period*